## Description

Question 1: Consider a one pixel wide line from (1, 1.33) to (6, 1.33), with square endcaps. The

outline of the line is shown on the figure below. Integer locations are at the center of each pixel.

a. Assume we are doing area-weighted sampling, with the alpha of each pixel set in

proportion to the amount of the pixel covered by the line. Give the alpha values of all the

pixels. (Hint: the value for (1,1) is 1/3). ( 8 points)

b. Now assume we are doing super-sampling. Below is the same line, drawn at twice the

resolution using some version of point sampling which fills whole pixels.

Halve the size of this image by averaging 2×2 blocks of pixels. Please fill the numbers in the

grids below. Assume the intensity for black is 0 and white is 1. (Hint: the value for (0, 0) is 1,

and (2, 2) is 0.5 ). (8 points)

Question 2: Below are shown the illumination graphs for the diffuse and specular components

of a flat surface lit by a light as shown with a viewer in the position indicated.

a. Draw two more graphs, one for the diffuse and one for the specular component of the

same flat surface. However, now make the distant light assumption, using a directional

light source coming from vertically above. (6 points)

b. Draw two more graphs, but now make the distant viewer assumption, assuming that the

viewer is looking from a constant direction vertically down to the surface. Use the point

light from the original example, NOT a directional light. (6 points)

c. Draw two more graphs, showing the effect of both a directional light coming from above

and a distant viewer looking from above. (6 points)

Question 3: On the left is a polygon with both its world coordinates and texture coordinates

marked. For example, the world coordinate for the bottom-left is (0, 0, 0) and its texture

coordinate is (0, 0). On the right is a 16×16 texture map that will be used with the polygon.

a. Draw the mipmap level L1, L2 and L3 for the texture. Indicate the intensity of each pixel

in each mipmap, and assume the mipmaps are generated by averaging pixels. Assume the

intensity for black is 0 and the intensity for white is 1. ( 12 points)

b. The polygon is rendered with a perspective view looking toward the negative z axis with

the positive y axis pointing up. The viewing and window parameters are such that, for the

polygon, each unit of distance in world space appears as 3 pixel lengths on the screen.

Which mipmap should be used for texturing the polygon? Show your working, and

assume nearest mipmap nearest as the texture interpolation mode. (8 points)

(Hint: you need to calculate the 𝜆 values for both x and y direction. You can calculate the

𝜆 value for x as follows: 𝜆𝑥 = log2

𝑡𝑒𝑥𝑒𝑙𝑠 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑥 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = log2

48

3×3

= 2.4 )